Extensions 1→N→G→Q→1 with N=C23 and Q=Dic9

Direct product G=N×Q with N=C23 and Q=Dic9
dρLabelID
C23×Dic9288C2^3xDic9288,365

Semidirect products G=N:Q with N=C23 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
C23⋊Dic9 = C2×C6.S4φ: Dic9/C6S3 ⊆ Aut C2372C2^3:Dic9288,341
C232Dic9 = C232Dic9φ: Dic9/C9C4 ⊆ Aut C23724C2^3:2Dic9288,41
C233Dic9 = C2×C18.D4φ: Dic9/C18C2 ⊆ Aut C23144C2^3:3Dic9288,162

Non-split extensions G=N.Q with N=C23 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
C23.Dic9 = C12.S4φ: Dic9/C6S3 ⊆ Aut C23726C2^3.Dic9288,68
C23.2Dic9 = C36.D4φ: Dic9/C9C4 ⊆ Aut C23724C2^3.2Dic9288,39
C23.3Dic9 = C36.55D4φ: Dic9/C18C2 ⊆ Aut C23144C2^3.3Dic9288,37
C23.4Dic9 = C2×C4.Dic9φ: Dic9/C18C2 ⊆ Aut C23144C2^3.4Dic9288,131
C23.5Dic9 = C22×C9⋊C8central extension (φ=1)288C2^3.5Dic9288,130

׿
×
𝔽